Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 983
1.
Food Res Int ; 186: 114331, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729716

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Antioxidants , Cold Temperature , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Prunus persica , Reactive Oxygen Species , Signal Transduction , Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Molecular Docking Simulation , Malondialdehyde/metabolism
2.
Sci Rep ; 14(1): 10243, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702388

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.


Freeze Drying , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Secretome/metabolism , Trehalose/metabolism , Trehalose/pharmacology , Cytokines/metabolism , Cells, Cultured , Culture Media, Conditioned/chemistry , Cryopreservation/methods , Temperature
3.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731579

Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.


Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Humans , Animals , Fungi/metabolism , Fungi/drug effects , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Stress, Physiological/drug effects
4.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693753

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Anti-Bacterial Agents , Nanoparticles , Nitric Oxide , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , RAW 264.7 Cells , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Immunotherapy/methods , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Bacterial Infections/drug therapy , Trehalose/chemistry , Trehalose/pharmacology
5.
Skin Res Technol ; 30(4): e13666, 2024 Apr.
Article En | MEDLINE | ID: mdl-38606717

BACKGROUND: It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE: We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS: We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS: An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION: These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.


Heparinoids , Trehalose , Humans , Trehalose/pharmacology , Trehalose/metabolism , Heparinoids/metabolism , Heparinoids/pharmacology , Skin/metabolism , Epidermis/metabolism , Skin Care , Water/metabolism , RNA, Messenger/metabolism , Sodium/metabolism , Sodium/pharmacology
6.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Article En | MEDLINE | ID: mdl-38579922

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Epithelial Cells , Kidney Tubules , Lysosomes , Swainsonine , Trehalose , Trehalose/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Lysosomes/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Autophagy/drug effects , Animals , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/cytology , Swainsonine/pharmacology , Cell Line
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38686419

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Freeze Drying , Pericardium , Polyethylene Glycols , Trehalose , Animals , Pericardium/chemistry , Trehalose/chemistry , Trehalose/pharmacology , Cattle , Polyethylene Glycols/chemistry , Glutaral/chemistry , Calorimetry, Differential Scanning
8.
Int J Biol Macromol ; 262(Pt 1): 129928, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309393

Trehalase has attracted widespread attention in medicine, agriculture, food, and ethanol industry due to its ability to specifically degrade trehalose. Efficient expression of trehalase remains a challenge. In this study, a putative trehalase-encoding gene (Tre-zm) from Zunongwangia mangrovi was explored using gene-mining strategy and heterologously expressed in E. coli. Trehalase activity reached 3374 U·mL-1 after fermentation optimization. The scale-up fermentation in a 15 L fermenter was achieved with a trehalase production of 15,068 U·mL-1. The recombinant trehalase TreZM was purified and characterized. It displayed optimal activity at 35 °C and pH 8.5, with Mn2+, Sn2+, Na+, and Fe2+ promoting the activity. Notably, TreZM showed significant inhibition effect on biofilm forming of Staphylococcus epidermidis. The combination of TreZM with a low concentration of antibiotics could inhibit 70 % biofilm formation of Staphylococcus epidermidis and 28 % of Pseudomonas aeruginosa. Hence, this study provides a promising candidate for industrial production of trehalase and highlights its potential application to control harmful biofilms.


Escherichia coli , Trehalase , Trehalase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Trehalose/pharmacology , Trehalose/metabolism , Biofilms
9.
Int J Biol Macromol ; 260(Pt 1): 129448, 2024 Mar.
Article En | MEDLINE | ID: mdl-38228204

The acquisition of high quality lyophilized IgY products, characterized by an aesthetically pleasing visage, heightened stability, and a marked preservation of activity, constitutes an indispensable pursuit in augmenting the safety and pragmatic utility of IgY. Within this context, an exploration was undertaken to investigate an innovative modality encompassing microwave freeze-drying (MFD) as a preparatory methodology of IgY. Morphological assessments revealed that both cryogenic freezing and subsequent MFD procedures resulted in aggregation of IgY, with the deleterious influence posed by the MFD phase transcending that of the freezing phase. The composite protective agent comprised of trehalose and mannitol engendered a safeguarding effect on the structural integrity of IgY, thereby attenuating reducing aggregation between IgY during the freeze-drying process. Enzyme-linked immunosorbent assay (ELISA) outcomes demonstrated a discernible correlation between IgY aggregation and a notable reduction in its binding affinity towards the pertinent antigen. Comparative analysis vis-à-vis the control sample delineated that when the trehalose-to-mannitol ratio was upheld at 1:3, a two-fold outcome was achieved: a mitigation of the collapse susceptibility within the final product as well as a deterrence of IgY agglomeration, concomitant with an elevated preservation rate of active antibodies (78.57 %).


Immunoglobulins , Mannitol , Trehalose , Freezing , Trehalose/pharmacology , Trehalose/chemistry , Mannitol/chemistry , Freeze Drying/methods
10.
Microbiol Spectr ; 12(3): e0340423, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38259091

Arbuscular mycorrhizal fungi (AMF) could establish symbiosis with plant roots, which enhances plant resistance to various stresses, including drought stress and salt stress. Besides AMF, chemical stimulants such as trehalose (Tre) can also play an important role in helping plants alleviate damage of adversity. However, the mechanism of the effect of AMF combined with chemicals on plant stress resistance is unclear. The objective of this study was to explore the synergistic effects of Claroideoglomus etunicatum AMF and exogenous Tre on the antioxidant system, osmoregulation, and resistance-protective substance in plants in response to salt stress. Tomato seedlings were inoculated with Claroideoglomus etunicatum and combined with exogenous Tre in a greenhouse aseptic soil cultivation experiment. We measured the arbuscular mycorrhizal symbiont development, organic matter content, and antioxidant enzyme activity in tomato seedlings. Both AMF and Tre improved the synthesis of chlorophyll content in tomato seedlings; regulated the osmotic substance including soluble sugars, soluble protein, and proline of plants; and increased the activity of superoxide dismutase, peroxidase, and catalase. The combination of AMF and Tre also reduced the accumulation of malondialdehyde and alleviated the damage of harmful substances to plant cells in tomato seedlings. We studied the effects of AMF combined with extraneous Tre on salt tolerance in tomato seedlings, and the results showed that the synergistic treatment of AMF and Tre was more efficient than the effects of AMF inoculation or Tre spraying separately by regulating host substance synthesis, osmosis, and antioxidant enzymes. Our results indicated that the synergistic effects of AMF and Tre increased the plant adaptability against salt damage by enhancing cell osmotic protection and cell antioxidant capacity. IMPORTANCE: AMF improve the plant adaptability to salt resistance by increasing mineral absorption and reducing the damage of saline soil. Trehalose plays an important role in plant response to salt damage by regulating osmotic pressure. Together, the use of AMF and trehalose in tomato seedlings proved efficient in regulating host substance synthesis, osmosis, and antioxidant enzymes. These synergistic effects significantly improved seedling adaptability to salt stress by enhancing cell osmotic protection and cell antioxidant capacity, ultimately reducing losses to crops grown on land where salinization has occurred.


Fungi , Mycorrhizae , Solanum lycopersicum , Mycorrhizae/physiology , Seedlings/microbiology , Trehalose/pharmacology , Antioxidants/metabolism , Salt Stress , Plants/metabolism , Soil
11.
J Ovarian Res ; 17(1): 11, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195648

The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.


Insulin Resistance , Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , Polycystic Ovary Syndrome/drug therapy , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Trehalose/pharmacology , Apoptosis , Oxidative Stress , Glucose , Hormones
12.
Cryobiology ; 114: 104811, 2024 Mar.
Article En | MEDLINE | ID: mdl-38061638

A directed vat set (DVS) starter was proposed to improve the drawbacks of liquid starters in fermented production and enhance the survival rates of B. animalis subsp. lactis BZ11, S. thermophilus Q-1, and Lactiplantibacillus plantarum LB12. The protective agent formula was optimized using the response surface method (RSM), with the survival rate as the benchmark. The best combination of cryoprotectants was determined to be BZ11: 10 % skimmed milk powder, 3 % sodium glutamate, and 15 % trehalose; LB12: 10 % skim milk powder, 5 % glutamate sodium, and 10 % trehalose; Q-1: 10 % skimmed milk powder, 3 % sodium glutamate, and 10 % trehalose. The survival rate of BZ11 significantly increased to 92.87 ± 1.25 %. The DVS fermented milk did not differ significantly from the control group regarding cholesterol removal, live cell counts and pH (p > 0.05). All DVS can be stored for at least 2500 d at -20 °C-this DVS starter for fermented milk benefits from its large-scale and automated commercial production.


Milk , Sodium Glutamate , Animals , Fermentation , Survival Rate , Trehalose/pharmacology , Powders , Cryopreservation/methods , Cryoprotective Agents/pharmacology
13.
Appl Biochem Biotechnol ; 196(3): 1194-1210, 2024 Mar.
Article En | MEDLINE | ID: mdl-37378719

Myocardial ischemia/reperfusion (I/R) injury is a pathological damage secondary to myocardial ischemia that can further aggravate tissue and organ injuries. Therefore, there is an urgent need to develop an effective approach for alleviating myocardial I/R injury. Trehalose (TRE) is a natural bioactive substance that has been shown to have extensive physiological effects in various animals and plants. However, TRE's protective effects against myocardial I/R injury remain unclear. This study aimed to evaluate the protective effect of TRE pre-treatment in mice with acute myocardial I/R injury and to explore the role of pyroptosis in this process. Mice were pre-treated with trehalose (1 mg/g) or an equivalent amount of saline solution for 7 days. The left anterior descending coronary artery was ligated in mice from the I/R and I/R + TRE groups, followed by 2-h or 24-h reperfusion after 30 min. Transthoracic echocardiography was performed to assess cardiac function in mice. Serum and cardiac tissue samples were obtained to examine the relevant indicators. We established an oxygen-glucose deprivation and re-oxygenation model in neonatal mouse ventricular cardiomyocytes and validated the mechanism by which trehalose affects myocardial necrosis via overexpression or silencing of NLRP3. TRE pre-treatment significantly improved cardiac dysfunction and reduced the infarct size in mice after I/R, accompanied by a decrease in the I/R-induced levels of CK-MB, cTnT, LDH, reactive oxygen species, pro-IL-1ß, pro-IL-18, and TUNEL-positive cells. Furthermore, TRE intervention suppressed the expression of pyroptosis-related proteins following I/R. TRE attenuates myocardial I/R injury in mice by inhibiting NLRP3-mediated caspase-1-dependent pyroptosis in cardiomyocytes.


Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Trehalose/pharmacology , Trehalose/therapeutic use , Pyroptosis , Reactive Oxygen Species/metabolism
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1061-1070, 2024 02.
Article En | MEDLINE | ID: mdl-37581638

Aging is associated with a disturbance in the regulation of the metabolic function of the liver, which increases the risk of liver and systemic diseases. Trehalose, a natural disaccharide, has been identified to reduce dyslipidemia, hepatic steatosis, and glucose intolerance. However, the roles of trehalose on lipid metabolism in aged liver are unclear which was investigated in this study. Thirty-two male Wistar rats were randomly allocated into four groups (n = 8). Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution orally for 30 days. Control groups of aged and young rats did not receive any treatment. At the end of the treatment period, blood samples and liver tissues were collected. Then the expression of SIRT1, AMPK, SREBP-1c, and PPAR-α and the level of AMPK phosphorylation (p-AMPK) were quantified by real-time polymerase chain reaction and western blotting. Moreover, biochemical parameters and the histopathology of livers were evaluated. Trehalose supplementation increased the level of SIRT1, p-AMPK, and PPAR-α, whereas the level of SREBP-1c was diminished in the liver of old animals. In addition, treatment with trehalose improved histopathological features of senescent livers. Taken together, our results show that old rats developed lipogenesis in the liver which was alleviated with trehalose. Therefore, trehalose may be an effective intervention to reduce the progression of aging-induced liver diseases.


AMP-Activated Protein Kinases , Trehalose , Male , Rats , Animals , Sterol Regulatory Element Binding Protein 1/genetics , AMP-Activated Protein Kinases/metabolism , Trehalose/pharmacology , Trehalose/metabolism , PPAR alpha/genetics , Sirtuin 1/genetics , Sirtuin 1/metabolism , Rats, Wistar , Liver , Lipid Metabolism , Lipids
15.
Adv Biol (Weinh) ; 8(2): e2300404, 2024 Feb.
Article En | MEDLINE | ID: mdl-37968550

Trehalose is synthesized in insects through the trehalose 6-phosphate synthase and phosphatase (TPS/TPP) pathway. TPP dephosphorylates trehalose 6-phosphate to release trehalose. Trehalose is involved in metamorphosis, but its relation with body weight, size, and developmental timing is unexplored. The expression and activity of TPS/TPP fluctuate depending on trehalose demand. Thus, TPS/TPP inhibition can highlight the significance of trehalose in insect physiology. TPS/TPP transcript levels are elevated in the pre-pupal and pupal stages in Helicoverpa armigera. The inhibition of recombinantly expressed TPP by N-(phenylthio)phthalimide (NPP), is validated by in vitro assays. In vivo inhibition of trehalose synthesis reduces larval weight and size, hampers metamorphosis, and reduces its overall fitness. Insufficient trehalose leads to a shift in glucose flux, reduced energy, and dysregulated fatty acid oxidation. Metabolomics reaffirms the depletion of trehalose, glucose, glucose 6-phosphate, and suppressed tricarboxylic acid cycle. Reduced trehalose hampers the energy level affecting larval vitality. Through trehalose synthesis inhibition, the importance of trehalose in insect physiology and development is investigated. Also, in two other lepidopterans, TPP inhibition impedes physiology and survival. NPP is also found to be effective as an insecticidal formulation. Overall, trehalose levels affect the larval size, weight, and metabolic homeostasis for larval-pupal transition in lepidoptera.


Lepidoptera , Animals , Larva/metabolism , Lepidoptera/metabolism , Trehalose/pharmacology , Trehalose/metabolism , Phosphoric Monoester Hydrolases/metabolism , Glucose/metabolism , Phosphates/metabolism
16.
Cryobiology ; 114: 104793, 2024 Mar.
Article En | MEDLINE | ID: mdl-37979827

One of the most common life-saving medical procedures is a red blood cell (RBC) transfusion. Unfortunately, RBCs for transfusion have a limited shelf life after donation due to detrimental storage effects on their morphological and biochemical properties. Inspired by nature, a biomimetics approach was developed to preserve RBCs for long-term storage using compounds found in animals with a natural propensity to survive in a frozen or desiccated state for decades. Trehalose was employed as a cryoprotective agent and added to the extracellular freezing solution of porcine RBCs. Slow cooling (-1 °C min-1) resulted in almost complete hemolysis (1 ± 1 % RBC recovery), and rapid cooling rates had to be used to achieve satisfactory cryopreservation outcomes. After rapid cooling, the highest percentage of RBC recovery was obtained by plunging in liquid nitrogen and thawing at 55 °C, using a cryopreservation solution containing 300 mM trehalose. Under these conditions, 88 ± 8 % of processed RBCs were recovered and retained hemoglobin (14 ± 2 % hemolysis). Hemoglobin's oxygen-binding properties of cryopreserved RBCs were not significantly different to unfrozen controls and was allosterically regulated by 2,3-bisphosphoglycerate. These data indicate the feasibility of using trehalose instead of glycerol as a cryoprotective compound for RBCs. In contrast to glycerol, trehalose-preserved RBCs can potentially be transfused without time-consuming washing steps, which significantly facilitates the usage of cryopreserved transfusible units in trauma situations when time is of the essence.


Cryopreservation , Cryoprotective Agents , Animals , Swine , Cryoprotective Agents/chemistry , Cryopreservation/methods , Trehalose/pharmacology , Trehalose/metabolism , Glycerol/pharmacology , Glycerol/metabolism , Hemolysis , Blood Preservation/methods , Erythrocytes/metabolism , Hemoglobins/metabolism , Hemoglobins/pharmacology , Oxygen/metabolism
17.
Biochimie ; 220: 48-57, 2024 May.
Article En | MEDLINE | ID: mdl-38128775

The study of the relationship between the activity and stability of enzymes under crowding conditions in the presence of osmolytes is important for understanding the functioning of a living cell. The effect of osmolytes (trehalose and betaine) on the secondary and tertiary structure and activity of muscle glycogen phosphorylase b (Phb) under crowding conditions created by PEG 2000 and PEG 20000 was investigated using dynamic light scattering, differential scanning calorimetry, circular dichroism spectroscopy, fluorimetry and enzymatic activity assay. At 25 °C PEGs increased Phb activity, but PEG 20000 to a greater extent. Wherein, PEG 20000 significantly destabilized its tertiary and secondary structure, in contrast to PEG 2000. Trehalose removed the effects of PEGs on Phb, while betaine significantly reduced the activating effect of PEG 20000 without affecting the action of PEG 2000. Under heat stress at 48 °C, the protective effect of osmolytes under crowding conditions was more pronounced than at room temperature, and the Phb activity in the presence of osmolytes was higher in these conditions than in diluted solutions. These results provide important insights into the complex mechanism, by which osmolytes affect the structure and activity of Phb under crowding conditions.


Glycogen Phosphorylase, Muscle Form , Glycogen Phosphorylase, Muscle Form/metabolism , Glycogen Phosphorylase, Muscle Form/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Trehalose/pharmacology , Trehalose/metabolism , Trehalose/chemistry , Betaine/chemistry , Betaine/pharmacology , Animals , Protein Structure, Secondary
18.
J Nanobiotechnology ; 21(1): 472, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38066538

Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE-/- mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.


Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Plaque, Atherosclerotic/drug therapy , Trehalose/pharmacology , Trehalose/metabolism , Nanogels , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Autophagy , Lipids
19.
Cryo Letters ; 44(5): 299-306, 2023.
Article En | MEDLINE | ID: mdl-38032310

BACKGROUND: Semen cryopreservation is a complex process during which there is alteration in the expression of sperm and seminal plasma proteins, molecular weight of protein or loss of membrane proteins during the process. In order to compensate for these changes, different membrane stabilizers are used in freezing semen extenders. However, there is scarcity of such studies during cryopreservation of goat semen. OBJECTIVE: To investigate the effect of membrane stabilizers on sperm membrane protein expression during cryopreservation of goat semen. MATERIALS AND METHODS: A total of 36 semen ejaculates from nine Assam Hill Goat bucks aged 2 to 2.5 years was collected by artificial vagina method. Three membrane stabilizers, each at two different concentrations viz. 50 and 80 mM sucrose, 50 and 100 mM trehalose, and 100 and 150 ng per mL IGF-1 (insulin-like growth factor 1 protein) were added to Tris-citric acid fructose egg yolk glycerol (TCFEYG) extender and semen samples were cryopreserved. The sperm membrane protein profile was studied in fresh and cryopreserved semen by SDS-PAGE. RESULTS: SDS- PAGE of sperm membrane extract of fresh semen revealed the presence of 24 protein bands with molecular weights ranging from 10 kDa to 240 kDa. Samples supplemented with 50 mM sucrose and 80 mM sucrose revealed 21 protein bands with molecular weights ranging from 10 kDa to 240 kDa. All the 21 protein bands were same as those observed in the sperm membrane of fresh spermatozoa, except that the 23 kDa, 29 kDa and 42 kDa bands were absent in frozen semen. Similarly, frozen semen extended with 50 mM trehalose and 100 mM trehalose revealed 22 protein bands with molecular weights ranging from 10 kDa to 240 kDa, but lacking the 29 kDa and 42 kDa bands. Proteins with molecular weights of 29 kDa, 130 kDa and 240 kDa were absent in frozen semen supplemented with 100 ng per mL IGF-1 and 150 ng per mL IGF-1. CONCLUSION: The present study revealed that supplementation of tris basic extender with trehalose at 100 mM and or IGF-1 at 100 ng/mL or 150 ng per mL improves the post-thaw semen characteristics and protects certain fertility related sperm membrane proteins. Doi.org/10.54680/fr23510110612.


Semen Analysis , Semen , Male , Female , Animals , Insulin-Like Growth Factor I/pharmacology , Goats , Trehalose/pharmacology , Cryopreservation/veterinary , Spermatozoa , Membrane Proteins , Sucrose/pharmacology
20.
PLoS One ; 18(11): e0294312, 2023.
Article En | MEDLINE | ID: mdl-38033125

Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblasts in vitro and in mouse developmental Purkinje cells ex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+ cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type and Npc1nmf164 mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.


Mitochondria , Niemann-Pick Disease, Type C , Trehalose , Animals , Humans , Mice , Cholesterol/metabolism , Fibroblasts/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Purkinje Cells/pathology , Trehalose/pharmacology
...